1.5.1 Exercises

In Exercises 1 - 10, use the pair of functions f and g to find the following values if they exist.

•
$$(f+g)(2)$$

•
$$(f-g)(-1)$$

•
$$(g-f)(1)$$

•
$$(fg)(\frac{1}{2})$$

•
$$\left(\frac{f}{q}\right)(0)$$

•
$$\left(\frac{g}{f}\right)(-2)$$

1.
$$f(x) = 3x + 1$$
 and $g(x) = 4 - x$

2.
$$f(x) = x^2$$
 and $g(x) = -2x + 1$

3.
$$f(x) = x^2 - x$$
 and $g(x) = 12 - x^2$

4.
$$f(x) = 2x^3$$
 and $g(x) = -x^2 - 2x - 3$

5.
$$f(x) = \sqrt{x+3}$$
 and $g(x) = 2x - 1$

6.
$$f(x) = \sqrt{4-x}$$
 and $g(x) = \sqrt{x+2}$

7.
$$f(x) = 2x$$
 and $g(x) = \frac{1}{2x+1}$

8.
$$f(x) = x^2$$
 and $g(x) = \frac{3}{2x - 3}$

9.
$$f(x) = x^2$$
 and $g(x) = \frac{1}{x^2}$

10.
$$f(x) = x^2 + 1$$
 and $g(x) = \frac{1}{x^2 + 1}$

In Exercises 11 - 20, use the pair of functions f and g to find the domain of the indicated function then find and simplify an expression for it.

•
$$(f+g)(x)$$

•
$$(f-g)(x)$$

•
$$(fg)(x)$$

•
$$\left(\frac{f}{g}\right)(x)$$

11.
$$f(x) = 2x + 1$$
 and $g(x) = x - 2$

12.
$$f(x) = 1 - 4x$$
 and $g(x) = 2x - 1$

13.
$$f(x) = x^2$$
 and $g(x) = 3x - 1$

14.
$$f(x) = x^2 - x$$
 and $g(x) = 7x$

15.
$$f(x) = x^2 - 4$$
 and $g(x) = 3x + 6$

16.
$$f(x) = -x^2 + x + 6$$
 and $g(x) = x^2 - 9$

17.
$$f(x) = \frac{x}{2}$$
 and $g(x) = \frac{2}{x}$

18.
$$f(x) = x - 1$$
 and $g(x) = \frac{1}{x - 1}$

19.
$$f(x) = x$$
 and $g(x) = \sqrt{x+1}$

20.
$$f(x) = \sqrt{x-5}$$
 and $g(x) = f(x) = \sqrt{x-5}$

In Exercises 21 - 45, find and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for the given function.

21.
$$f(x) = 2x - 5$$

22.
$$f(x) = -3x + 5$$

23.
$$f(x) = 6$$

24.
$$f(x) = 3x^2 - x$$

25.
$$f(x) = -x^2 + 2x - 1$$

26.
$$f(x) = 4x^2$$